dr Damian Nieckarz

Stanowisko
adiunkt
Jednostki
KATEDRA CHEMII TEORETYCZNEJ
Telefon
81 537-77-65
Adres e-mail
Wyświetl
Strona www
https://www.researchgate.net/profile/Damian-Nieckarz
Link do Bazy Wiedzy
Damian Nieckarz
Konsultacje

Każdy czwartek w godz. 13:15-14:45. Pokój 618, Budynek Dużej Chemii, VI piętro.

Adres

Budynek Dużej Chemii
pl. M. Curie-Skłodowskiej 3/511 20-031 Lublin
20-553 Lublin

O sobie

Dr Damian Nieckarz w roku 2016 obronił z wyróżnieniem pracę doktorską uzyskując stopień naukowy doktora w dziedzinie nauk chemicznych. Obecnie pracuje jako adiunkt w Katedrze Chemii Teoretycznej Uniwersytetu Marii Curie-Skłodowskiej w Lublinie. Dotychczas brał udział w realizacji kilku projektów badawczych NCN (SONATA BIS 2, IDEAS PLUS, OPUS 9 i MINIATURA 2). Tematyka badawcza dr Nieckarza jest związana z zastosowaniem symulacji komputerowych Monte Carlo w badaniach procesów samoorganizacji prostych cząsteczek organicznych na powierzchniach płaskich. W obszarze jego zainteresowań znajdują się w szczególności nanomateriały ażurowe, tesselacje supramolekularne, struktury krystaliczne oraz egzotyczne fraktalne molekularne, stabilizowane przez kierunkowe wiązania chemiczne: koordynacyjne, halogenowe, wodorowe i kowalencyjne. Jest autorem 35 publikacji naukowych (ORCID: 0000-0002-0381-7919).

Od 2020 r dr Damian Nieckarz jako kierownik projektu realizuje grant badawczy NCN SONATA 14 (2018/31/D/ST4/01443), pt. Badania teoretyczne procesów samoorganizacji w metaloorganicznych warstwach zaadsorbowanych. Cele powyższego projektu łączą się z pracami naukowymi dotyczącymi projektowania tzw. szkieletów metaloorganicznych - fascynujących nanomateriałów o potencjalnym zastosowaniu w wielu dziedzinach nauki, takich jak: medycyna, chemia czy farmacja.


Działalność naukowa

Zainteresowania naukowe

[1] Nanomateriały ażurowe

[2] Symulacje komputerowe Monte Carlo

[3] Struktury supramolekularne

[4] Fraktale deterministyczne

[5] Chemia kwantowa

[6] Matematyka

[7] Statystyka matematyczna

[8] Tesselacje

Najważniejsze publikacje naukowe

[1] D. Nieckarz, P. Szabelski, Simulation of the self-assembly of simple molecular bricks into Sierpiński triangle, Chem. Comm., 50, 6843-6845, 2014.

[2] J. Eichhorn, D. Nieckarz, O. Ochs, D. Samanta, M. Schmittel, P. Szabelski, W. M. Heckl, and M. Lackinger, On-surface Ullmann coupling: The influence of kinetic reaction parameters on the morphology and quality of covalent networks, ACS Nano, 8, 7880–7889, 2014.

[3] X. Zhang, N. Li, G. Gu, H. Wang, D. Nieckarz, P. Szabelski, Y. He, Y. Wang, C. Xie, Z. Shen, J. Lu, H. Tang, L. Peng, S. Hou, K. Wu, Y. Wang, Controlling molecular growth between fractals and crystals on surfaces, ACS Nano, 9, 12, 11909-11915, 2015.

[4] L. Xu, Y. Yu, J. Lin, X. Zhou, W. Tian, D. Nieckarz, P. Szabelski, S. Lei, On-surface synthesis of two-dimensional imine polymers with tunable band gap: a combined STM, DFT and Monte Carlo investigations, Nanoscale, 8, 8568-8574, 2016.

[5] D. Nieckarz, P. Szabelski, Chiral and fractal: from simple design rules to complex supramolecular constructs, Chem. Commun., 52, 11642-11645, 2016.

[6] A. Rastgoo-Lahrood, N. Martsinovich, M. Lischka, J. Eichhorn, P. Szabelski, D. Nieckarz, T. Strunskus, K. Das, M. Schmittel, W. M. Heckl, M. Lackinger, From Au-thiolate chains to thioether Sierpiński triangles: the versatile surface chemistry of 1,3,5-tris(4-mercaptophenyl)benzeze on Au(111), ACS Nano, 10, 12, 10901-10911, 2016.

[7] X. Zhang, N. Li, H. Wang, G. Gu, Y. Zhang, D. Nieckarz, P. Szabelski, S. Hou, B. K. Teo, Y. Wang, Influence of relativistic effects on assembled structures of V-shaped bispyridine molecules on M(111) surfaces where M = Cu, Ag, Au, ACS Nano, 11, (8), 8511-8518, 2017.

[8] C. Li, X. Zhang, N. Li, Y. Wang, J. Jang, G. Gu, Y. Zhang, S. Hou, L. Peng, K. Wu, D. Nieckarz, P. Szabelski, H. Tang, Y. Wang, Construction of Sierpiński triangles up to the fifth order, J. Am. Chem. Soc., 139 (39), 13749-13753, 2017.

[9] D. Nieckarz, P. Szabelski, Self-assembly of conformationaly flexible tripod functional molecules: structural analysis from computer simulations, Chem. Commun., 54, 8749-8752, 2018.

[10] D. Nieckarz, W. Rżysko, P. Szabelski, On-surface self-assembly of tetratopic molecular building blocks, Phys. Chem. Chem. Phys., 20, 23363-23377, 2018.

[11] D. Nieckarz, P. Szabelski, Surface‐confined self‐assembly of asymmetric tetratopic molecular building blocks, ChemPhysChem, 20, 1850-1859, 2019.

[12] D. Nieckarz, P. Szabelski, Theoretical modeling of the surface guided self‐assembly of functional molecules, ChemPhysChem, 21, 643-650, 2020.

[13] C. K. Krug, D. Nieckarz, Q. Fan, P. Szabelski,  M. Gottfried, The macrocycle versus chain competition in on‐surface polymerization: insights from reactions of 1,3‐dibromoazulene on Cu(111), Chem. Eur. J., 26, 7647-7656, 2020.

[14] K. Gdula, D. Nieckarz, On-surface self-assembly of metal-organic architectures: insights from computer simulations, J. Phys. Chem. C, 124, 20066-20078, 2020.

[15] K. Nieckarz, P. Szabelski, D. Nieckarz, Monte Carlo simulations of the self-assembly of hierarchically organized metal-organic networks on solid surfaces, Surf. Sci., 719, 122041, 2022.

[16] K. Nieckarz, D. Nieckarz, Monte Carlo simulations of the metal-directed self-assembly of Y-shaped positional isomers, Crystals, 12, 492, 2022.

[17] D. Nieckarz, K. Nieckarz, Steering the surface-confined self-assembly of multifunctional star-shaped molecules, J. Phys. Chem. C, 127, 12035-12054, 2023.

[18] J. Lu, D. Nieckarz, H. Jiang, Z. Zhu, Y. Yan, F. Zheng, W. Rżysko, J. Lisiecki, P. Szabelski, Q. Sun, Order-disorder transition of two-dimensional molecular networks through a stoichiometric design, ACS Nano, 17, 20194–20202, 2023.